Crystal Structure of Yeast DNA Polymerase ε Catalytic Domain
نویسندگان
چکیده
DNA polymerase ε (Polε) is a multi-subunit polymerase that contributes to genomic stability via its roles in leading strand replication and the repair of damaged DNA. Here we report the ternary structure of the Polε catalytic subunit (Pol2) bound to a nascent G:C base pair (Pol2G:C). Pol2G:C has a typical B-family polymerase fold and embraces the template-primer duplex with the palm, fingers, thumb and exonuclease domains. The overall arrangement of domains is similar to the structure of Pol2T:A reported recently, but there are notable differences in their polymerase and exonuclease active sites. In particular, we observe Ca2+ ions at both positions A and B in the polymerase active site and also observe a Ca2+ at position B of the exonuclease site. We find that the contacts to the nascent G:C base pair in the Pol2G:C structure are maintained in the Pol2T:A structure and reflect the comparable fidelity of Pol2 for nascent purine-pyrimidine and pyrimidine-purine base pairs. We note that unlike that of Pol3, the shape of the nascent base pair binding pocket in Pol2 is modulated from the major grove side by the presence of Tyr431. Together with Pol2T:A, our results provide a framework for understanding the structural basis of high fidelity DNA synthesis by Pol2.
منابع مشابه
Crystal Structure of Yeast DNA Polymerase e Catalytic Domain
DNA polymerase e (Pole) is a multi-subunit polymerase that contributes to genomic stability via its roles in leading strand replication and the repair of damaged DNA. Here we report the ternary structure of the Pole catalytic subunit (Pol2) bound to a nascent G:C base pair (Pol2G:C). Pol2G:C has a typical B-family polymerase fold and embraces the template-primer duplex with the palm, fingers, t...
متن کاملDNA polymerization-independent functions of DNA polymerase epsilon in assembly and progression of the replisome in fission yeast
DNA polymerase epsilon (Pol ε) synthesizes the leading strands, following the CMG (Cdc45, Mcm2-7, and GINS [Go-Ichi-Nii-San]) helicase that translocates on the leading-strand template at eukaryotic replication forks. Although Pol ε is essential for the viability of fission and budding yeasts, the N-terminal polymerase domain of the catalytic subunit, Cdc20/Pol2, is dispensable for viability, le...
متن کاملHuman Dna Polymerase Ε Associated Proteins
DNA polymerase ε from HeLa cells has been purified as a heterodimer of a 261 kDa catalytic subunit and a tightly associated smaller polypeptide, the B-subunit. The cDNAs encoding the B-subunits of both human and mouse Pol ε were cloned and shown to encode proteins with a predicted molecular weight of 59 kDa. These subunits are 90 % identical and share 22 % identity with the 80 kDa Bsubunit of S...
متن کاملCrystal Structure of the Human Pol α B Subunit in Complex with the C-terminal Domain of the Catalytic Subunit.
In eukaryotic DNA replication, short RNA-DNA hybrid primers synthesized by primase-DNA polymerase α (Prim-Pol α) are needed to start DNA replication by the replicative DNA polymerases, Pol δ and Pol ϵ. The C terminus of the Pol α catalytic subunit (p180C) in complex with the B subunit (p70) regulates the RNA priming and DNA polymerizing activities of Prim-Pol α. It tethers Pol α and primase, fa...
متن کاملCMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication.
DNA replication in eukaryotes is asymmetric, with separate DNA polymerases (Pol) dedicated to bulk synthesis of the leading and lagging strands. Pol α/primase initiates primers on both strands that are extended by Pol ε on the leading strand and by Pol δ on the lagging strand. The CMG (Cdc45-MCM-GINS) helicase surrounds the leading strand and is proposed to recruit Pol ε for leading-strand synt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014